

Date Planned : / /	Daily Tutorial Sheet-1	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Main Archive	Exact Duration :		

Act	ual Date	e of Attempt : / /	JEE Main A	rchive	Exact Duration :_			
1.	Alum	helps in purifying water by:				(2002)		
	(A)	forming Si complex with clay	particles					
	(B)	sulphate part which combines with the dirt and removes it						
	(C)	coagulating the mud particles						
	(D)	making mud water soluble						
2.	Glass	Glass is a:						
	(A)	micro-crystalline solid	(B)	super-cooled	liquid			
	(C)	gel	(D)	polymeric mi	cture			
3.	Grapl	Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is						
	that g	that graphite: (2003						
	(A)	is a non-crystalline substanc	ce					
	(B)	is an allotropic form of diamond						
	(C)	has molecules of variable molecular masses like polymers						
	(D)	has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak						
		interplate bonds						
4.	The s	The soldier of Napolean army while at Alps during freezing winter suffered a serious problem as regards						
	to the	to the tin buttons of their uniforms. White metallic tin buttons got converted to grey powder. This						
	trans	formation is related to :				(2004)		
	(A)	an interaction with nitrogen of the air at very low temperatures						
	(B)	a change in the crystalline structure of tin						
	(C)	a change in the partial pressure of oxygen in the air						
	(D)	an interaction with water vapour contained in the humid air						
5 .	Alum	Aluminium chloride exists as dimer, $\mathrm{Al_2Cl_6}$ in solid state as well as in solution of non-polar solvent						
	such	as benzene. When dissolved in	water, it gives :			(2004)		
	(A)	$Al^{3+} + 3Cl^{-}$	(B)	$[Al(H_2O)_6]^{3+}$	+ 3Cl ⁻			
	(C)	$[Al(OH)_6]^{3-} + 3HCl$	(D)	$Al_2O_3 + 6HC$	L			
6.	The s	The states of hybridisation of boron and oxygen atoms in boric acid (H_3BO_3) are respectively: (200						
	(A)	${ m sp}^2$ and ${ m sp}^2$	(B)	sp^2 and sp^3				
	(C)	${ m sp}^3$ and ${ m sp}^2$	(D)	sp ³ and sp ³				
7.	Heati	Heating an aqueous solution of aluminium chloride to dryness will give :						
-•	(A)	AlCl ₃	(B)	Al_2Cl_6		(2005)		
	(C)	Al_2O_3	(D)	Al (OH)Cl ₂				
8.	The n							
	(A)	one sigma, one pi	(B)	one sigma, tv		(2005)		
	(C)	two sigma, one pi	(D)	two sigma, tv				

9.	The s	tructure of dil	orane (B_2 l	H ₆) contains	:				(2005)
	(A)	four 2c-2e bond and two 3c-2e bonds							
	(B)	two 2c-2e	bond and	four 3c-2e	bonds				
	(C)	two 2c-2e	bond and	two 3c-2e b	onds				
	(D)	four 2c-2e	e bond and	l four 3c-2e	bonds				
10.	In sili	con dioxide :							(2005)
	(A)	each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bounded to two silicon atoms							
	(B)	each silicon atom is surrounded by two oxygen atoms and each oxygen atom is bounded to two silicon atoms							
	(C)	silicon aton	n is bonded	l to two oxyge	n atoms				
	(D)	there are d	ouble bond	s between sili	con and oxy	gen atoms			
11.	Which	n of the follow	ing oxides i	is amphoteric	in characte	r ?			(2005)
	(A)	CaO	(B)	CO_2	(C)	SiO_2	(D)	SnO_2	
12 .	The s	tability of diha	alides of Si,	Ge Sn and Pl	b increases	steadily in se	quence :		(2007)
	(A)	$PbX_2 << Sr$	$nX_2 << GeX$	$X_2 \ll \mathrm{SiX}_2$	(B)	$\mathrm{GeX}_2<<\mathrm{Si}$	X ₂ << SnX	$_2 << PbX_2$	
	(C)	$\mathrm{SiX}_2<<\mathrm{Ge}$	$X_2 \ll PbX_2$	$_2 << \mathrm{SnX}_2$	(D)	$\mathrm{SiX}_2 << \mathrm{Ge}$	X ₂ << SnX	$_2 << \mathrm{PbX}_2$	
13.	Amon	Among the following substituted silanes the one which will give rise to cross linked silicone polymer or						polymer or	
	hydro	lysis is :							(2008)
	(A)	R_3SiCl	(B)	R_4Si	(C)	RSiCl_3	(D)	$\rm R_2SiCl_2$	
14.	Which	Which of the following is the correct statement? (2008)							(2008)
	(A)	$\mathrm{B_2H_6\cdot 2NH_3}$ is known as 'inorganic benzene'.							
	(B)	Boric acid is a protonic acid.							
	(C)	Beryllium exhibits coordination number of six.							
	(D)	Chlorides o	f both bery	llium and alu	minium ha	ve bridged chl	oride struc	etures in solid	phase.
15 .	The l	oond dissocia	tion energ	y of B-F i	n BF ₃ is	646 kJ mol ⁻	whereas	that of C-F	in CF ₄ is
	515 l	$\kappa J \text{ mol}^{-1}$. The	correct re	eason for high	her B-F 1	oond dissocia	tion energ	y as compare	d to that o
	C - F	is:							(2009)
	(A)	smaller size	e of B-atom	compared to	that of C-a	tom			
	(B)	stronger σ bond between B and F in BF_3 as compared to that between C and F in CF_4							
	(C)	significant $p\pi$ – $p\pi$ interaction between B and F in BF $_3$ whereas there is no possibility of such							
	(0)	Significant	P# P#						·
	(0)	_		and F in CF ₄					v